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Abstract— Mining useful knowledge from data readily 
available in today’s information systems has been a common 
challenge in recent years as more and more events are being 
recorded, and there is need to improve and support many 
organisational processes in a competitive and rapidly changing 
environments.  The work in this paper shows using a case 
study of Learning Process - how data from various process 
domains can be extracted, semantically prepared, and 
transformed into mining executable formats to support the 
discovery, monitoring and enhancement of real-time processes. 
In so doing, it enables the prediction of individual 
patterns/behaviour through further semantic analysis of the 
discovered models. Our aim is to extract streams of event logs 
from a learning execution environment and describe formats 
that allows for mining and improved process analysis of the 
captured data. The approach involves augmenting the 
informative value of the resulting model derived from mining 
event data about the process by semantically annotating the 
process elements with concepts they represent in real time 
using process descriptions languages, and linking them to an 
ontology specifically designed for representing learning 
processes to allow for the analysis of the extracted event logs 
based on concepts rather than the event tags of the process. 
The semantic analysis allows the meaning of the learning 
object properties and model to be enhanced through the use of 
property characteristics and classification of discoverable 
entities, to generate inference knowledge which are then used 
to determine useful learning patterns by means of the proposed 
Semantic Learning Process Mining (SLPM) formalization - 
described technically as Semantic-Fuzzy Miner. As a result, the 
approach provides us with the capability to infer new and 
discover hidden relationships/attributes the process instances 
share amongst themselves within the knowledge base, and the 
ability to identify and address the problem of determining the 
presence of different learning patterns or behaviour. Inference 
knowledge discovered due to semantic enrichment of the 
process model is advantageous especially in solving some 
didactic issues and answering some questions with regards to 
different Learners behaviour within the context of process 
mining and semantic model analysis. To this end, we show that 
information derived from process mining algorithms can be 
improved by adding semantic knowledge to the resulting 
model. 

Keywords - process model, process mining, semantic 
annotation, ontology, learning process, event logs 

I.  INTRODUCTION 
In recent years, handling large datasets extracted from 

process logs readily available in today's information systems 
have raised intense discussion within the big data 
community. Data collection and analysis is proving to be 
more and more complex in many organisations. These 
growing complexities are evidenced by the need for richer 
and more precise description of real-time processes that 
allows for flexible exploration of different operational data. 
A common challenge has been on how to create systems 
capable of providing platforms for data exploration by 
stemming understandable patterns as well as making the 
discovered patterns explicable [1][2]. Over the past few 
decades, advances in data mining techniques has led to 
significant growths in data analytics and big data research. 
Researches has shown that a valuable technique that uses 
data mining techniques to discover meaningful information 
from event data about any process for further analysis and 
exploration is the Process Mining technique [3]. Process 
mining combines techniques from computational intelligence 
and data mining to process modeling and analysis, as well as 
several other disciplines to analyze large data sets [2]. The 
process mining technique has been successfully applied for 
classical mining of processes where each process execution 
is recorded in terms of events log sequences, and as a result, 
useful information about how activities depend on each other 
in any process domain has been made possible, and has 
proven to be essential for extracting models capable of 
creating new and meaningful knowledge. A shared challenge 
with most of the existing process mining techniques is that 
they depend on tags in event logs information about the 
process, and therefore to a certain extent are limited, because 
they lack the abstraction level required from real world 
perspectives. Majority of the process mining techniques in 
literature are purely syntactic in nature, and to this effect are 
somewhat ambiguous when confronted with unstructured 
data. This means that these techniques do not technically 
gain from the real knowledge (semantics) that describe the 
tags in event log of the domain process.  

In this paper, we show that analysis provided by current 
process mining techniques can be improved by adding 
semantic information to event logs of the process domain. 
We use a case study of Research Process to illustrate our 
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approach. Our focus is on ascertaining by a series of 
validation experimentations; how the result of learning 
process mining algorithms can be enriched through semantic 
representation of the deployed model and analysis.  We look 
at how effective semantic reasoning can be used to lift 
process mining analysis from the syntactic level to a 
conceptual level through semantic representation of the 
deployed models. The semantic analysis takes advantage of 
the rich semantics described in event data log of a learning 
process, and links them to concepts in an ontology in order to 
extract useful patterns by means of semantic reasoning. 
Semantic Reasoning is supported due to the formal definition 
of ontological concepts and expression of relationships that 
exist between the event logs of the learning process. The 
method uses the semantics of the sets of activities within a 
learning process to generate rules and events relating to task, 
to automatically discover and enhance the process model 
ontology through semantic annotation of the elements within 
a purposefully developed learning knowledge base. We 
introduce the approach as means towards discovering and 
enrichment of the set of recurrent behaviours that can be 
found within the learning execution environment following 
the work in [4] to determine attributes the process elements 
share amongst themselves within the learning knowledge 
base, or that distinguishes a category of entities (learners) 
from another. The technique is developed in order to address 
the problem of determining the presence of different patterns 
within the learning process model. The standpoint for our 
described approach is based on the probe; “To what extent 
can references to the ontologies and effective raising of 
process analysis from the syntactic to semantic level enable 
real time viewpoints on the learning process domain, to help 
address the problem of analysing data based on concepts and 
to answer questions about relationships the learning objects 
share amongst themselves within the learning knowledge-
base”. The semantic viewpoint is captured by annotating the 
elements in the systems based on two types of analyses (i) 
how to make use of the semantics that describes the available 
data? and (ii) how to mine the semantic information? [5].  
The rest of the paper is structured as follows:  

     Section 2, explains the search for our primary goal and 
motivation towards using semantic-based approach to 
manage perspectives of process mining techniques.   
     In section 3, we show how we extract the input data 
necessary to be mapped unto the learning process logs, and 
also provide an example of a research process execution data 
which we use to demonstrate our approach throughout this 
paper.  
    Section 4 describes the learning problem use case scenario 
and implementation of the semantic-based approach to show 
the usefulness of the proposed mining algorithm and 
formalisation.  
     In section 5, we discuss and analyse appropriate related 
works in this area of research. 
    We finally conclude the paper and point out directions for 
future works in section 6. 

II. APPLICATION OF SEMANTIC-BASED APPROACH FOR 
PROCESS MINING 

One of the benefit provided by semantic process mining and 
analysis is the ability to describe the semantics behind the 
tags in an event log of a process considered useful for 
discovery of new knowledge. The main opportunity is that 
this analysis is enhanced as a result of it being based on 
concepts rather than the event tags. The work in this paper is 
directed towards finding useful aspects of process mining 
techniques as described in Fig. 1, which are used to discover 
process models from event logs about a learning process 
while keeping a clear focus on the use of semantic driven 
approach for enriching the information value of the derived 
models through semantic-based analysis. 

  
Fig. 1 Conceptual overview of Semantic-based Process Mining and Analysis 

      Semantic modelling and analysis is an important 
technique especially to guide our goal which is to “extract 
streams of event logs from a learning process and then 
describe formats that allows for mining and improved 
process analysis of the data”. The search for our primary 
goal is driven by our aim which is (i) applying process 
mining techniques to the domain of a learning process and 
(ii) to provide real time semantic knowledge and 
understanding about learning process which are useful 
towards the development of learning process mining 
algorithms that are more intelligent with high level of 
effective reasoning capabilities. We address the learning 
questions LQ1 and LQ2 in section 3, to show in details how 
the semantic approach is implemented and relevant in the 
context of process mining to improve formalization and 
information values of the resulting learning process model. 
At the core of the approach is a Semantic Learning Process 
Mining algorithm (Semantic-Fuzzy Miner) and Declarative 
Process Discovery tactics which we developed to help find 
answers to our motivational perspectives; Thus 

• To show how process mining can be applied to 
improve the informative value of learning process 
data. 

• Describe how improved process models can be 
derived from the large volume of event data logs 
found within the learning process knowledge base. 



3531

• Use of semantic representation of the deployed 
models to enrich the result of the learning process 
mining through ontological descriptions and 
inference knowledge discovery.  

• Use of ontologies with effective semantic reasoning 
to lift process mining analysis from the syntactic 
level to a conceptual level. 

• Reveal how references to ontologies and effective 
raising of process analysis from syntactic to 
semantic level enables real time viewpoints on the 
learning process domain; which helps to address the 
problem of analysing learning data based on 
concepts and to answer questions about 
relationships the learning objects (process 
instances) share amongst themselves within the 
learning knowledge-base.  

Contributions: We delivered as a result of tackling the 
motivation of this paper, means by which the use of semantic 
tools can be used to manage perspectives of process mining 
techniques by enhancing the informative value of the 
resulting models. This paper makes the following key 
contributions: 

• Semantic motivated synchronization of event log 
formats for learning process data. 

• Ontology driven search for explorative analysis of 
learning activities and its process executions. 

• Techniques for annotating unlabelled learning 
activity sequences using business process model 
notations and ontology schema/vocabularies. 

• Use of semantics tools to manage perspectives of 
process mining algorithms and definition of 
methods towards discovery and enhancement of 
process model analysis.  

• Useful strategies towards development of process 
mining algorithms that are more intelligent, 
predictive and robotically adaptive. 

• Importance of semantics process mining to augment 
informative value of data about any domain 
process: case study of learning process.   

III. DOMAIN PROCESS MINING (RESEARCH PROCESS 
EVENT DATA) 

The purpose of designing the semantic-based approach is 
on revealing information about resources hidden within the 
learning event data log, the different process instances that 
makes up the learning model, and identifying useful arrays 
towards enriching the information values of the resulting 
process models based on the captured user profiles. Process 
mining techniques aims to address such problem by 
establishing a direct connection between the discovered 
process models and actual low-level event data about the 
processes, and therefore allows for viewing the same reality 
from different angles or at different levels of abstraction. As 
a ground for the research, the work in this paper focuses on 
using semantic tools to manage insights to application of 
process mining techniques to provide improved analysis of 

the resulting models. Thus, our purpose for designing the 
Semantic Learning Process Mining algorithm - to extract, 
semantically prepare, and transform event data about a 
learning process into mining executable formats that allows 
us to perform an improved learning process analysis by 
constructing a semantic model that represents the deployed 
process model. As shown in Fig. 2, the first step towards 
achieving this goal is to capture event data about a learning 
process (research process domain) and generate process 
model to show in details how the learning activities has been 
performed and to reveal interesting connections between the 
different elements (process instances). The viewpoints 
(process mapping) then allow us to further perform an 
enhanced analysis of the learning model. 

  
Fig. 2 Application of the Process Mining Techniques  

The mining technique described in Fig. 2, involves the 
extraction of process history data from the learning execution 
environment (Table 1), which is then followed by submitting 
the resulting event streams format to the process mining and 
analytic environment to help in discovery of the process 
model (Fig. 3) using the Fuzzy Miner algorithm in Disco tool 
[6]. 

TABLE 1. EVENT INPUT DATA LOG FOR RESEARCH PROCESS 

 
 
Consequently, suitable learning patterns are determined 

which enables the automatic creation of the learning process 
mapping (workflow) as shown in the resulting Fuzzy model 
in Fig. 3.  
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Fig. 3 Resulting Fuzzy Model from Mining the Process Event Data.  

The resulting approach and process model shows how we 
extract the input data necessary to be mapped for the 
proposed semantic analysis. The benefit of performing such 
tactics is that the resulting process map allows us to quickly 
and interactively explore the learning process into multiple 
directions and to answer concrete questions about the 
learning activities workflow, and more importantly allows us 
to further model and hold inference reasoning to generate 
process improvement ideas along the way. The mapping step 
was necessary especially when our main purpose is to make 
the semantics information about the learning data readily 
available for mining and analysis at conceptual level [7]. The 
mining approach reveals the process map and provides us 
with the opportunity to focus on the stream of behaviours, 
and to see the paths they follow in the process model. The 

Process ID tags (Table 1) were used to assign the identifier 
for process instances and ActivityType tags for the set of task 
that are performed during the learning process. We associate 
Timestamp tags with Start Time and End Time of event for 
the activity instances for the purpose of sequencing. The time 
performance shows how often each task is executed in term 
of frequency of each activity in the process model.  

A. Modelling Process Transition for Learning Concepts 
and Activities 

     To perform semantic-based analysis of the resulting 
model derived by applying the process mining technique, it 
was necessary to construct process transition information 
about the mapped processes and semantics of the sequence 
of the learning activities. We develop a Business Process 
Model Notation (BPMN) for the learning workflow library 
to look at the learning activities and grouping of immediate 
preceeding tasks in order to semantically map the process 
model. To achieve this objective, we construct a BPMN 
model (Fig. 4) with notational elements capable of 
describing the nesting of individual activities (Task) by using 
the event-based (AND – XOR – OR) split and join gateways 
[3]. According to [3] BPMN notations are token based 
semantics which can be used to replay a particular process 
instance trace within the discovered process model.  We 
based the BPMN learning model workflow transition on four 
milestones; Establish Context  Learning Stage  
Assessment Stage  Validation of Learning Outcome (Fig. 
5) with the primary aim to determine and explain the steps 
taken within the mapped processes, and to provide a 
consistency check when designing the semantic model to 
ensure that a process instance enters the model at a particular 
point in time and not on the whole transition during the 
lifecycle of the learning process model - from Defining the 
Topic Area to Review Literature and Addressing the Problem 
then Defending the Solution. The preliminary knowledge of 
the discovered sequence of activities and learning patterns is 
what we use in providing new knowledge and a richer set of 
intelligence towards extending the learning process model to 
a conceptual level analysis.

 

 
Fig. 4 BPMN Model with notation for Process Sequence-Flow with Bizagi Modeller 
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Fig. 5 Process Model with Defined Milestones

IV. USE CASE PROBLEM SCENARIO AND MANAGING 
PERSPECTIVES OF LEARNING PROCESS MINING OUTCOME 

A. Definition of Learning Problem Example 
Semantic-based process mining is an advantageous tactic 

especially in solving some didactic issues and answering 
some questions with regards to different Learners behaviour. 
To show the usefulness of this approach, we define 
resolution towards resolving a real life question and 
understanding about a learning process. We use the questions 
in LQ1 and LQ2 to provide learning knowledge 
representation and specification by revealing interesting 
connection among the learning object and data types, in 
order to provide a better understanding of how the different 
elements within the Learning Process Knowledge base relate 
and interact with each other. We show the usefulness of the 
tactics by answering the following question, thus to 
determine; 

LQ1. What attribute or paths do successful learners have 
in common? 

LQ2. What attributes distinguishes such successful 
learners from the uncompleted ones? 

We describe a running example of learning process in 
execution using the Research Process as use case to prove 
how our approach can be used to answer the learning 
question LQ1 and LQ2. The resulting process map 
discovered using the fuzzy miner algorithm in Disco (Fig. 3) 
and the BPMN workflow (Fig. 4) - description of the 
Research Process activity sequence reveals that the first step 
to conducting a research is to decide on what to investigate 
(i.e Research Topic), and then go about finding answers to 
the research questions. At the end of the process, the 
researcher is expected to be awarded a certificate. These 
process involves the workflow of the journey from choosing 
the research topic to being awarded a certificate, and 
comprises sequence of practical steps or set of activities 
through which must be performed in order to find answers to 
the research problems. The workflow for these steps are not 
static, it changes as a researcher travel along the research 
process. At each phase or milestone of the process, the 
researcher is required to complete a variety of learning 

activities which will help in achieving the research goal. 
Despite all of this useful information, the deployed model 
still does not disclose to us how the individual process 
instances that makes up the model interact or differ from 
each other (semantic abstraction levels), which attributes 
they share amongst themselves within the knowledge base, 
or the activities they perform together or differently, for 
instance, who are the individuals that have successfully 
completed the research process? For this reason, we believe 
that by adding semantic knowledge to the deployed model, it 
will be possible for us to determine and address the above 
mentioned challenges. To explicate this tactics, we define 
that for a research process to be classified as successful, it is 
necessary that the researcher must complete a given set of 
milestones in order to be awarded the degree. However in 
any case whereby the researcher has not completed a set of 
milestone(s) which is necessary to ensure the research 
outcome, such learner can be classified as uncomplete 
learner. In such way we can ascertain which individuals has 
successfully completed the research process. 

B. Managing Perspectives of Learning Process Mining 
Results 
Semantic descriptions (structured organisation) can serve 

as a good practice for representation of process mining 
results by providing formal way of representing the datasets 
from the data pre-processing stage to the mining results [8]. 
Many process mining algorithms lack the ability to identify 
and make use of semantics across different domains. 
Ontologies are useful tool towards specifying domain 
process semantics and can reduce the semantic gap by 
annotating the resulting models from the event data with rich 
semantics using process description languages such as 
Ontology Web Language (OWL)[9], Semantic Web Rule 
Language (SWRL)[10] etc. As a group of concepts and 
relationships, ontologies has the capability to make 
consistency inference checks by performing semantic logic 
reasoning for entities found within the process knowledge 
base through the object property characteristics and 
assertions. The work in this paper uses the semantic based 
inference knowledge discovery approach to find out 
patterns/behaviour that describes or distinguishes certain 
entities within the learning knowledge base by recognizing 
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what paths successful entities (learners) follow or have in 
common and what attributes distinguishes the successful 
learners from the uncompleted ones as described in questions 
LQ1 and LQ2. The purpose is not only to answer the 
following question using the semantic-based approach, but to 
show how by referring to the attributes (semantic 
knowledge) and the application of semantic reasoning, it 
becomes easy to manage or refer to a particular case/group of 
learners which in this example we focus on the use case of 
Successful and Uncomplete learners. We show in the BPMN 
workflow library (Fig. 4) and the developed semantic model 
that the flow of processes from the definition of topic area to 
award certificate; consist of different learning steps which 
the researcher has to or partly perform in order to complete 
the research process. We provided Four milestones; 
Establish Context  Learning Stage  Assessment Stage 

 Validation of Learning Outcome (Fig. 5) in order to 
determine and explain the steps taken during the research 
process; from Defining the Topic Area –to- Review 
Literature –and- Addressing the Problem –then- Defending 
the Solution. These milestones consist of sequence of 
activities, and the order in which these learning activities are 
carried out has the capability of determining the research 
outcome. 

In Fig. 6, 7, 8 and 9 we show the Learning Activity 
concepts that are defined in the ontology model and how 
they are mapped to the various Milestones of the Research 
Process to ensure sequence of transitions during the learning 
process. 

 
Fig 6. Ontology Graph and ActivityConcept mapping for the 
DefineTopicArea Milestone. 

 
Fig 7. Ontology Graph and ActivityConcept mapping for the 
ReviewLiterature Milestone. 

 
Fig 8. Ontology Graph and ActivityConcept mapping for the 
AddressProblem Milestone. 

 
Fig 9. Ontology Graph and ActivityConcept mapping for the 
DefendSolution Milestone. 

The drive for the semantic mapping of the activity 
concepts is that the approach allows the meaning of the 
learning objects and properties to be enhanced through the 
use of property characteristics and classification of 
discoverable entities. For instance, to address the learning 
problem stated in LQ1, we refer to the deployed model, and 
to this effect, describe that a Successful Learner is a subclass 
of, amongst other NamedLearnerCategory, a Person that 
performs some LearningActivityConcepts, who has a 
universal object property restriction/relationship with the 
four milestones of the ResearchProcessClass. As shown in 
Fig. 10 - the necessary condition is: if something is a 
Successful Learner, it is necessary for it to be a participant of 
the Learning ActivityConcept class and necessary for it to 
have a kind of sufficiently defined condition and relationship 
with the four class: DefineTopicArea, ReviewLiterature, 
AddressProblem and DefendSolution. 

 
Fig. 10 Object Property Assertion/Attributes for SuccessfulLearner Class. 
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Accordingly, to address and provide answer to LQ2, it 
was necessary to establish the object property assertion for 
the Uncomplete Learners to be able to determine what 
attributes distinguishes such learners from the Successful 
ones. We describe in our model that an Uncomplete Learner 
is a subclass of, amongst other NamedLearnerCategory, a 
Person that performs some Learning ActivityConcept who 
has a universal object property restriction/relationship with 
only some of the milestones of the ResearchProcess Class 
but not all of the classes. As shown in Fig. 11 - the necessary 
condition is: if something is a Uncomplete Learner, it is 
necessary for it to be a participant of the Learning 
ActivityConcept class and necessary for it to have a kind of 
sufficiently defined condition and relationship with only 
some of the Class:- DefineTopicArea, ReviewLiterature, 
AddressProblem but not all four. 

 
Fig. 11 Object Property Assertion/Attributes for UncompleteLearner Class 

Perceptibly, we see that the Object Property Restriction is 
used to infer anonymous classes that contains all of the 
individuals that satisfies the restriction, in essence, all of the 
individuals that have the relationship required to be a 
member of a particular Class. The consequence is the 
necessary and sufficient Condition which makes it possible 
to implement and check for consistency in the model which 
means that it is necessary to fulfil the condition of the 
universal or existential Restriction - for any individual to 
become a member of a Class, as we answer using the LQ1 
and LQ2 to describe the class SuccessfulLearner (Fig. 10) 
and UncompleteLearner (Fig. 11). 

C. Process Formalization and Ordering of the Semantic 
Process Algorithm  
The following section shows the semantic learning 

process mining algorithm formalization and ordering for our 
approach. We show how by constructing transition system 
and semantic description of the process elements based on 
the learning event log, it becomes possible for us to 
determine individual learning patterns and behaviour within 
the learning knowledge base.  

     The SLPM algorithm formalization describes the basis for 
our approach. To explain the strategies for constructing the 
classification of learning activity concepts and sub sets, we 
require the following notations, , , ,   , is a function 
with domain  and process logs , , , . The domain  is 

a SuperClass of the SubClasses , , , . The SubClass 
(also referred to as SubSet) is a set where each of the 
individual Learning Activity occurs and sometimes may 
occur multiple times.  

For example, [ , , , , , ] may be the sequence 
set of learning activity for Person,  …  over , (the 
DefineTopicArea Milestone Class). i.e. … ( ) = |   |. 

Therefore, IF   = Define Topic  
 = Approval Activity 
 = Topic decline 
 = Refine Topic 
 = End Topic Proposal 

THEN, the sequence set of activities for ( ) = {Define 
Topic, Approval Activity, Topic Decline, Refine 

Topic, Approval Activity, End Topic Proposal}. 

However, for the purpose of the learning question LQ1 and 
LQ2, our focus is not on the various individual activities that 
makes up a definitive Class (milestone) but on computing the 
set of individual process instances that has or not completed 
a given number of milestones. To complete a given 
milestone, one must perform the set (or perhaps a subset) of 
the activities that comprise it. Given the fact for transition 
purposes, a process instance does not move on to the next 
milestone without completing a distinctive sequence set of 
learning activities that makes up the preceeding milestone. 
The sum and difference in process logs for a given number 
of person, , is defined in a straightforward way, i.e  

       …  = |   | ± |    | ± |   | ± |    |.  

Therefore,  …  is a finite set |     |. For 
example, we described that Every Person that 
hasCompleteMilestone a DefineTopicArea and that 
hasCompleteMilestone a ReviewLiterature and that 
hasCompleteMilestone an AddressProblem and that 
hasCompleteMilestone a DefendSolution is a 

SLPM Algorithm Formalization: 
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SuccessfulLearner”. Thus, the Class Successful Learners, 
, will be sum of the set of activities log, , that a learner 

has completed for the milestones , and , and , and .  

Hence,    IF  is a Class that consist of the set |   | + 
|    | + |   | + |    |,  

THEN  is the set |     |.  

Similarly, we defined that Every Person that 
hasOnlyCompleteMilestone a DefineTopicArea or that 
hasOnlyCompleteMilestone a ReviewLiterature or that 
hasOnlyCompleteMilestone an AddressProblem is an 
UncompleteLearner. Therefore, the Uncomplete Learners, 

, is the class of leaners where some or set of activities 
for the milestone , or , or , or  is missing over a finite 
set |     |.   

Hence,   IF  is a Class that consist of the set |    
  |  |      |  |     |  |     

 |,  

THEN  is the set |    1|. 

We defined and established in previous section (4(B)) 
that Successful Learner differs from the Uncompleted 
Learner through the Necessary and Sufficient Condition 
attribute. The assertion implies that for a leaner to be 
regarded as successful they must fulfil the universal 
restriction by way of the Necessary and Sufficient Condition 
Object property.  Thus, the logic rule expressions in Fig. 12 
and Fig. 13;  

“Everything that hasCompleteMilestone a DefineTopicArea 
and that hasCompleteMilestone a ReviewLiterature and that 
hasCompleteMilestone an AddressProblem and that 
hasCompleteMilestone a DefendSolution is a 
SuccessfulLearner”. 

On the other hand, 
“Everything that hasOnlyCompleteMilestone a 
DefineTopicArea or that hasOnlyCompleteMilestone a 
ReviewLiterature or that hasOnlyCompleteMilestone an 
AddressProblem is an UncompleteLearner. 

 
Fig. 12. Referencing Snippet View for the Inferred SuccessfulLearner 

Class Defined in Protégé. 

 
      Fig. 13. Referencing Snippet View for the Inferred UncompleteLearner 
Class Defined in Protégé. 

V. RELATED WORKS 
Semantic-based Process Mining refers to techniques that 

systematically integrate domain knowledge especially formal 
semantics into event logs and models about any given 
process.  Research in the area of Semantic Web and 
Technologies has led to quite mature standards for 
assembling and modelling process domain knowledge [11]. 
Currently, Semantic Web Ontologies has become a 
fundamental tool for information extraction and knowledge 
processing by providing a structure for distribution of 
conceptual models about any given process. The OWL [9] 
has emerged as the standard format for defining Semantic 
Web ontologies, and is widely accepted and used towards 
advanced structuring of information and knowledge 
engineering for enrichment of datasets and depiction of 
inference rules. According to [8] a well-designed information 
retrieval or mining system should present results and 
discovered behaviours in a formal and structured format qua 
being interpreted as domain knowledge and to further 
enhance the existing knowledge base. The authors mention 
that ontology is one of the way to formally represent the 
mining results as sets of annotated terms and relations 
towards information extraction and association rule mining 
especially with Ontology-based Information Extraction 
(OBIE) systems [12]. [8] also mention that ontology can 
integrate the use of heterogeneous/unrelated information to 
guide recommendation systems. According to the authors, 
ontology-based recommendation system uses ontology for 
user profiling and personalized search for data resources.  

Techniques for semantic process modelling and analysis 
focuses on information about resources hidden within a 
process knowledge-base, and how they are related. 
Semantic-based analysis allows the meaning of the domain 
object properties to be enhanced through the use of property 
characteristics and classification of discoverable entities, to 
permit analysis of the extracted event logs based on concepts 
rather than the event tags of the process. From learning 
process application domain perspective, [13] notes that 
educational process mining is an emerging field in the 
educational data mining (EDM) discipline, concerned with 
discovering, analyzing, and improving of educational 



3537

processes based on information hidden in datasets and event 
logs of the process. According to the authors [13], one of the 
challenges with process discovery and analysis techniques 
when applied to the educational domain is that they rely 
exclusively on the syntax of labels in databases, and are very 
sensitive to data heterogeneity, labelname variation and 
frequent changes. Due to these challenges, large educational 
process models are discovered without some kind of 
hierarchy or structuring. To address these problem, the 
authors show how by linking labels in event logs to the 
underlying semantics that describes the discovered models, 
we can bring educational processes discovery to the 
conceptual level in order to provide a more accurate and 
compact mining and analysis of such processes at different 
levels of abstraction. By extracting educational process 
models annotated with semantic information, the authors 
propose a semi-automatic procedure used to associate 
semantics to training labels. They used the Ontology 
Abstract Filter plug-in in ProM [14] as input to a 
semantically annotated event log to produce as output an 
event log where the names of tasks, i.e. trainings labels, are 
replaced by the names of a set of chosen concepts. The 
produced log is then exported as SAMXML [15] file format, 
and subsequently perform a control-flow mining using the 
Heuristic Miner algorithm [16] to extract the educational 
process model based on the concepts that has been derived. 

Reference [17] observes that most of the existing 
techniques for analysing large growing knowledge bases 
focus on building algorithms to help the knowledge-base 
automatically or semi-automatically extend. The authors note 
that the use of an association rule mining algorithm to 
populate knowledge-base and to improve the relations 
between the various entities within the knowledge-base is a 
useful approach considering the fact that most systems 
constructing large knowledge bases continuously grow, they 
do not contain all facts for each category, resulting in 
missing value dataset. To resolve this challenge, the authors 
developed a new parameter called Modified Support 
Calculation Measure which generates new and significant 
rules. They also developed a structure, based on pruning 
obvious item sets and generalized association rules which 
decreases the amount of discovered rules in order to help 
maintain the large growing knowledge-base and rules. In 
[18] we mention that Association Rule Learning aims at 
finding rules that can be used to predict the value of some 
response variables that has been identified as being important 
but without focusing on a particular response variable. This 
association aims at creating rules of the form: If X Then Y, 
where X is often called the antecedent and Y the consequent. 
Thus, X  Y. According to the work in [18] we show that 
this rule is similar and can be related to the SWRL [10] 
which is a useful language designed for process description 
especially to provide an improved learning ontology and 
enhancement of the process model. The SWRL rule has the 
form; atom ^ atom (antecedent)...  atom ^ atom 
(consequent). Association rule learning strongly supports the 
use of such metrics frequently expressed in form of support 
and confidence. These expressions help in measurement of 
the strength of the association between learning objects. 
Support determines how often a rule is applicable to a given 

data set which means the fraction of instances for which both 
antecedent and consequent hold. Hence, a rule with high 
support is more useful than a rule with low support. A rule 
that has low support may occur simply by chance and is 
likely to be irrelevant from a learning perspective because it 
may not be profitable to monitor, recommend and promote 
learning activities or patterns. 

The authors in [19] notes that pattern discovery 
algorithms uses statistical and machine-learning techniques 
to build models that predicts behaviour of captured data. 
According to the authors, one of the most pattern discovery 
techniques used to extract knowledge from pre-processed 
data is Classification. They observe that most of the existing 
classification algorithms attains good performance for 
specific problems but are not robust enough for all kinds of 
discovery problems. [19] propose that combination of 
multiple classifiers can be considered as a general solution 
for pattern discovery because they obtain better results 
compared to a single classifier as long as the components are 
independent or have diverse outputs. The approach compares 
the accuracy of ensemble models, which take advantage of 
groups of learners to yield better results using the Meta 
Classifier (Staking and Voting) alongside other Base 
classifiers: Decision Tree algorithm, k-Nearest Neighbour, 
Naive Bayesian and BayesNet. Explicitly, the works in 
[20][18][4] shows that the problems of modelling learning 
processes can be solved by transforming ontology population 
problem to a classification problem where, for each entity 
within the ontology, the concepts (classes) to which the 
entities belongs to have to be determined, hence, classified.  

According to the work in [21] Classification is one of the 
most common data mining technique that aims at finding 
models or functions that describes or distinguishes data 
classes or concepts. A useful application of such approach is 
to annotate the classification labels with the set of relations 
defined in an ontology especially for use in semantic 
enrichment of captured data. Semantics encoded in 
classification tasks has the potential not only to influence the 
labelled data but also to handle large number of unlabelled 
data [22][23]. The authors in [23] integrated ontology as 
consistency constraints into multiple related classification 
tasks by classifying multiple categories of unlabelled data in 
parallel to determine labels that violates the ontology. 
Reference [20] argue that classification is a fundamental task 
for a lot of intelligent applications, and that classifying 
through logic reasoning may be both too demanding and frail 
because of inherent incompleteness and complexity in the 
knowledge bases. However, they observe that these methods 
adopt the availability of an initial drawing of ontology that 
can be automatically enhanced by adding or refining 
concepts, and have been shown to effectively solve learning 
modelling problems [4] using Description Logics 
particularly those based on classification, clustering and 
ranking of individuals. Reasoning on ontological knowledge 
plays an important role in the semantic representation of 
processes such as the learning process. This is possible 
because semantic reasoning allows the extraction and 
conversion of explicit information into some implicit 
information, for instance, the intersection or union of classes, 
description of relationships and concepts/role assertions.  
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A large number of developed systems in current literature 
uses various mining techniques for representation of 
concepts, knowledge or data which are focused on applying 
technologies to different aspects of processes [24][25]. 
Nevertheless, the application of semantic reasoning can help 
solve the problem of regulating the evolving and static 
methods for representing such knowledge at theoretical, 
technological and conceptual levels by making inferences 
[26][18], retaining and applying what have been learned 
[27], and discovery and enhancement of new processes 
[3][4]. In this paper, we apply the semantic-based approach 
to manage perspective of the learning process mining. The 
focus is to further enhance this area of research by not only 
adapting the process mining tools but also present a way to 
relate semantic-based reasoning for computing various 
processes within domain knowledge-bases by automatically 
constructing process models capable of defining, classifying 
and enhancing observed patterns or behaviours.  

VI. CONCLUSION 
The work in this paper proves that semantic-based 

approach can be used to manage perspectives of process 
mining techniques. We extract streams of event data logs 
from a learning execution environment, using a case study of 
research process domain, to describe formats that allows for 
mining and improved analysis of captured event data logs. 
The approach makes use of process description languages 
and semantic annotations to link elements within a learning 
knowledge-base with concepts that they represent in an 
ontology specifically designed for representing learning 
process. By referring to ontologies, the approach provides us 
with the capability to determine the relationships and 
attributes the process instances share amongst themselves 
within the knowledge-base, and then infer and discover 
hidden patterns automatically by means of semantic 
reasoning. The semantic analysis allows the meaning of the 
learning object properties to be enhanced through the use of 
property characteristics and classification of discoverable 
entities, and permit analysis of the discovered model based 
on concepts rather than the event tags of the process. 

Future researches could focus on applying the approach 
described in this paper to analyse streams of events logs that 
are involved in a different process domain to produce useful 
knowledge which can be used to load a more enhanced 
model within the domain area.  
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